常用电工基础知识第三节第二课

单相交流电路

电工作业 • 2018-08-29 • 200+ 浏览

三、典型的单相交流电路

1.纯电阻电路

负载是纯电阻的交流电路称为纯电阻电路,例如,负载为白炽灯、电热器等。

 1)电流与电压的关系

图2 -20为纯电阻电路的接线图和相图。

image.png

当电阻上流过电流i=Imsinωt时,电阻R的端电压为U=Imsinωt=Umsinωt

式中Um=ImR

等式两边同除2,得U=IR

根据上述结论可知:

1)电流与电压同相。

2电流频率与电压频率相同。

3电流与电压关系符合欧姆定律。

2)纯电阻电路的功率

在纯电阻电路中,电流、电压都是随时间变化的,由功率与电压、电流的关系可知,功率也是随时间变化的。瞬时功率等于电压瞬时值u与电流瞬时值i的乘积,即p =ui

根据公式,把同一瞬间的电压值与电流值逐点相乘,就可画出如图2-21所示的瞬时功率曲线。在前半周内,电压、电流均为正值,所以瞬时功率为正值;在后半周内,电压、电流均为负值,但相乘之后仍为正,所以瞬时功率为正值。由以上结论可知,不论电流方向如何,电阻总要消耗功率。

image.png

瞬时功率曲线上个周期内的均值叫做均功率。因为这个功率是电阻消耗掉的, 所以也叫有功功率,用P 表示,单位为瓦W)。经数学推算可知,有功功率等于最大瞬时功率 1/2,image.png

式中U—电阻上交流电压的有效值(V)

I——流过电的交流效值(A)

R——用电器的电(Ω)。

可见,此表达式与直流电路算功率的公式形式一样.只不过压、电流均为有效值。

2.纯电感电路

1)电压与电流的用位

由电阻近似为零的电感线圈组成的交流电路,可近试认为纯电感电路。

电感线圈的基本特点是:当通过电感线圈的电流发生变化时,在电感线圈中就要产生自感电动势,这个自感电动势的作用是阻碍电感线圈中电流的变化。其自感电动势与电流的变化image.png成正比image.png

这里先说明一下,电流变化image.png2-22(b)为正弦电流波形的正半周,把时间轴以t等分,然后作垂时间轴的垂线正弦电流波相交.从各交点作时间轴的行线.即得到各段所对应的t;image.png称为电流的变化率。

image.png

由图2 -22可见,在正弦电流波起始点,当时间变化第一个t时,电流变化了 i,.其变化率为image.png当时间变化第二个t.时电变化了t.其变化率为image.png由于t相等.i>t, 所以image.png在正弦电流波最大值时,t=0,image.png变化率接近于零。下半周情况类似,只是电流变化率为负值。由上面的分析可知,正弦电流的波形从零开始上升.电流变化率大.以后逐渐减 小,到正弦交流电出现大值时,电流变化为零。

假设电感线圈中通正弦交流电流,其初相角为零,其电路图与波形图如图 2- 23所示。

把电流变化分为以下4个阶段:

image.png(1)ωt0变化到image.png时,电流为正,其数值不断增加,电流变率image.png为正,且不断变小,自感电动势image.png为负,绝对值逐渐减小,直到image.png处时image.png自感电动势e也为零。

(2)ωtimage.png变化到Π时,电流为正,其数不断减小,电流变化率image.png为负,其绝对值逐渐增大,感电动势image.png为正值,不断增大,直到Π时为最大自感电动势也为最大。

(3)ωtΠ变化到image.png,电流从零变化到负的大,电流变化率image.png为负,且从负的大变化到零.自感电动势image.png从正大变化到,其方向与电流方向相反。

(4)ωtimage.png变化到2Π,电流从负大变化到零,电流变化率image.png为正,并且从零变化到大值感电势image.png从零变化到负最大,方向与电流相同。在图2-23中,用虚线表示自感电动势的波形,可见感电动势落后于电流90°。在纯电感电路中电为零,因此电电压在任何一瞬间都与自感电动势大小相等、方向相反,所以ue反相,U的波形

用实线表示(2 -23),显然电压超前电流90°,三者的相量关系如图2 -24所示。

2)电流和电压的关系

由于在电感线圈两端的电压相位不同于电流,所以不能用欧姆定律处理瞬时值的电压与 电流的关系。为了分析电感线圈中电压与电流的关系,我们做如下试验:

将一个电阻极小的电感线圈L与交流电源接通,改变交流电压数值,用电压表和电流表分别测量电感线圈两端的电压与电流,其测量数据见表2-2。

可以发现:电压有效值增大时,电流随着增加;电压有效值减小时,电流随着减小。

image.png

从表中数据可见:电感线圈中,电压有效值与电流有效值之比为一常数,用XL来表示这一 常数,即image.png

image.png

由此可见,此形式与欧姆定律一致。XL和电阻R相似,在纯电感电路中阻碍电流通过,把它叫做感抗,其单位也是欧姆(Ω)

进一步的试验与数学推导证明,感抗和电感量与频率的乘积成正比,即

XL=ωL=2Πft

式中L—线圈的电感(H);

F—电源电压的频率(Hz);

Ω电源电压的角频率(rad/s)=2Πf

3)纯电感电路的功率

在纯电感电路中,电压瞬时值与电流瞬时值的乘积叫做瞬时功率,即P=ui,如果把纯 电感电路中的电压值和电流值逐点相乘,就可画出如图2-25所示的瞬时功率波形。

由图可见,瞬时功率P2倍的电源频率按正弦规律变化。从数学推导可知:瞬时功率的最大值为image.png,但在一周内的平均值为零,即纯电感电路中不消耗能量。用图2-25中瞬时功率波形从能量的角度来解释其含义。

image.png

在电流的第一个1/4周期内,电流由零开始上升,此时在线圈周围逐渐建立起磁场。线圈 从电源中得到能量转化为磁场能量储存起来。在这段时间内电流与电压同方向,功率为正,表示线圈从电源吸取能

(2)在电流的二个1/4期内,电流由大值逐渐下降到零,这时,来储存在磁场中 的能逐渐转化为电能而返还电源。这段时间内,电流与电压方向相反,功率为负,表示线向电源返还能

(3)在电流的第三个1/4周期与第一个1/4周期相似,虽然这时电流为负,但线圈中只要 有电流流过就会立磁场,所以这段时间仍然是建立磁场储存能量过程,只是磁场方向相反. 由于电压与电流均为负.功率为正,说明线圈从电源吸收能量。

(4)在电流的第四个1/4周期与第二个1/4周期情况相似,也是线圈向电源送还能

的事实说明:在纯电感电路中,只有线电源间的能量交换而没有能量的消耗。

通常用瞬时功的最大值来说明能转换的规模,并把它叫做无功功率,用QL来表示, 单位是乏(Var)image.png

无功功率绝对不是无用的功率.它是具有电感的设备正常作必不可少的条件。

无功功率在电力供电系统中有很要的作用。电力供电系统中的许多电气设(如变压 器、电动机等)都是具有电感性质的负,它们要依靠磁场来传递能,没有磁场它们无法工作;要建立磁场,必须从电源取得电能。因此,发电机必须向电感负提供一定数量的无功功率。